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BENDING AND BUCKLING OF RECTANGULAR SANDWICH PLATES

By N. J. Hoff

SUMMARY

Differential equations and boundary conditions are derived for the .
bending and buckling of sandwich plates. The buckling load is celculated
for a simply supported plate subjected to edgewise compression. -The
formulas obtained are evaluated numerically and the results are plotted
in a disgrsm. The theory is in satisfactory agreement with results of
tests carried out at the Forest Products Leboratory.

INTRODUCTION

The expression "sandwich plate" designates a composite plate con-
sisting of two thin faces and a thick core. In alrplane construction
the faces are usually of aluminum alloy and the core is of some light-
welight material such as an expanded plastic or balsa wood. In the latter
case the fibers of the wood are in general arranged perpendicularly to
the plane of the plate. Since thus the modulus of elasticity of the core
in the plane of the plate is of the order of magnitude of one-thousandth
of that of the faces, the normal stresses in the core are of little
importance in resisting bending moments even though the usual ratio of
face thickness to core thickness is between one-tenth and one-hundredth.
On the other hand the core performs a tesk in transmitting shear forces
and undergoes considerable shearing deformations because 1ts modulus of
shear is low. Hence shearing deforma.tions must not be disregarded in
the analysis of sandwich plates.

In an earlier paper (reference 1) the differential equations of
bending were derived by meens of the principle of virtual displacements
for sandwich beams subjected:to transverse and axial loads. Integration
of the equations ylelded formulas for buckling load and deflection which
were found to be in good agreement with test results. For this reason
in the present paper the bending and the buckling of sandwich plates are
analyzed on the basis of the same assumptions as those underlying the
earlier investigation.

Sandwich pletes have already been discussed by various authors. In
1942, Leggett and Hopkins (reference 2) gave a rigorous and an approximate
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solution of the problem of the buckling of sandwich plates simply
supported along the four edges. In 1943, Van der Neut (reference 3)
carried out a rigorous analysis of the same prcblem. In 1945, March
and Smith (reference 4) presented approximate strain-energy solutions
for various edge conditions. In 1946, Bijlaard (reference 5) proposed
a simple procedure which gives rigorous results for simply supported
plates and approximate ones for other edge conditions. In 1948,
Reissner (reference 6) developed & large-deflection theory for sandwich
plates and in the same year Libove and Batdorf (reference T) presented
a new small-deflection theory.

~ In spite of this abundance of theoretical work in the field, the

development of the present theory is Jjustified in the author's opinion

because it is simple enough to permit the solution of the problem of

the buckling of rectangular sandwich plates having various edge con-

ditions, The solution by means of the rigorous theories cited presents

great difficulties in cases when any of the edges is not simply supported.
. At the -same time the present theory is more relisble than those which have

already been used to obtain results for the less-simple edge conditions.

This report contains the development of the theory and a solution
of the buckling problem for the case when all the four edges are simply
supported. It is hoped that the graph conteining the numericel results
will be found convenient to use in the industry. -

The calculations presented here were carried out at the Polytechnic
Institute of Brooklyn under the sponsorship and with the financial
assistance of the National Advisory Committee for Aeronautics. The
author is indebted to Mr. Kuo-Tai Yen who checked the derivations and

*  computed the numerical values for the diagrem.

SYMBOLS
B integration constant
c core thickness, inches
C multiplier in buckling-stress expression; integration
constant
D bending rigidity of plate, powrid-inches squared
per Iinch
De . bending rigidity of two independent faces, pound-inches

squared per inch
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Do

s, e m e b R W et e v =

bending rigidity of sandwich panel, neglecting rigidity
of independent facés and of core, pound-inches squared
per inch -

Young's modulus, psi

form factor

shear modulus, psi

side ratio of bulge

edge lengths of sandwich panel, inches

number of half waves in direction of load

buckling load, pounds per inch

one-quarter buckling loaed corresponding to Dp, pounds
per inch

one-quarter buckling load corresponding to D,, pounds
per Inch

compressive edge load in x-direction, pounds per inch
compressive edge load in y-direction, pounds per inch

distributed transverse load, psi

sandwich buckling paremeter (GcIFacr f)
2

integration constant; refers to surface area during
Integration .

face thickness, inches

x-displacement, in opposite directions in the two faces,
inches

strain energy, inch-pounds

y-displacement, in opposite directions in the two faces »
inches

potential of external load

z~displacement, inches

o — —————— e v v =r e - mw——————— e e ——
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rectangular coordinate in plane of faces, inches
rectangular coordinate in plene of Paces, inches

rectanguler coordinate perpendicular to plane of faces,
inches

shear strain '

variation sign

Laplace operator

normal strain

Poisson's ratio

normel stress, psi

buckling stress of sandwich panél, psi

puckling stress of two Independent faces, psi

shear stress, psi

bending

core

face

transverse load

shear

DERIVATION OF DIFFERENTIAL EQUATIONS

The differentiel equatlions of the problem are derived by means of
the principle of virtual displacements from the essential parts of the
strain energy stored in the sandwich plate. The strain-energy quantities
consldered as essential are those caused in the faces by extensions in
the x- and y- directions (see figs. 1 and 2 for the notation) and by
shear in the xy-plane; the strain energy of bending in the faces; and
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the strain energy of sheer ceused in the core by anguler changes In -the
xz- and yz-planes. Consequently the stresses in the xy-plane in the
core are assumed to contribute only negligible amounts to the total
strain energy. This essumption is Justifiable when the moduli E

and G of the core are small as compared wlth those of the faces.
Moreover, normal strains in the core in the z-direction are disregarded.
The earlier investigations of the sandwich beam proved this procedure
to be satisfactory. Finally, the strain energy stored in the faces
because of shear perpendicular to the faces is neglected. This isg
permissible Just &s the shear strain energy stored in a beam subjected
to bending can be disregarded provided the beam is long enough. In the
case of the sandwich plate the ratio of the length or width of the plate
to the thickness of a face 1is always large.

The deformations are described by means of three functions wu, v,
and w of the coordinstes x and y (see figs. 3 and 4). The
function u represents a displacement In the positive x-direction in
the upper face and a simultaneous displacement of equal magnitude in
the negative x-direction, in the lower face. The definition of the
v-displacements is obtained from the preceding one through replacing x
by ¥y. During the u-~ and v-displacements the faces, and the entire
sandwich plate, remain plane, The plate becomes curved during the
w~-displacements vwhich take place in the z-direction through shearing
the core. The w~displacements do hot cause force resultants (corre-
sponding to membrane stresses) in the x- and y-directions in the indi-
vidual faces but they give rise to bending and twisting moments in them
because of the nonvanishing bending and torsional rigidity of each face.
With

E du dv du

Ox = (—+|J.—) €Ex = —

l_u2dx dy dx

E du , dv dv

Oy = ——s|p — + — €y = —

v 1-u2(dx dy) Y&y
_ aféu , av _Gu  dv
Txy-G(a”a) eyt

the strain energy stored in one face

Up = (1/2)1:ﬂ ("xex + Oyey + Txyyxy)dx dy

mariwn o et mr e e e o A e —————— — - et ———— e - —w -
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becomes
Up = (1/2) Et/(l - ueﬂj]liuxa + 2puy vy + vya) +

(1/2)(1 - ) (uy + vx)2:|dx ay (1)

vwhere the subscripts x and y denote differentiation with respect
to x and Yy, respectively.

The strain energy of bending in one face plate can be calculated
from the known formula (see, for instance, equation (48) on p. 50 of
reference 8)

Up = (D/2) fjﬁ: [(wna + 2 Wy + wyy2 + 2(1 - u)wxya:ldx ay (2)

vwhere D dis the bending rigidity of the plate. In the case of a face

D= Et3/EL2(1 - ua)]  (28)

The angles of shear in the core are

[2u/(c + t)] - Wy

Txz

Tyz = [2v/(c & %)] - wy

Hence the strain energy of shear stored in the core is

Ug = (Gce/2) ‘[[;[(c f“t - wx)2 + (c fvt - wy)r‘]dx dy (3)

where Gc is the shear modulus of the core.

The potential of the distributed transverse load q is

Vo=~ [| wraxay ()
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while the potential of the distributed compressive loads Py and Py is

Vo = - (2f2) [[ wlex oy - (2yf2) [[ wfax ay (5)

According to the principle of virtual displacements

8(U + V) = 28U¢ + 28Up + 8Ug + 8Vg + &V¢ = O (6)

Substitutions yield

3(U+7V) = 1 - )] ff {Z(ux?)ux + Mugdvy + pvybuy + vydvy

(1 -p) [(u.y + vx)(Su.y+ va):l} ax dy +
(1/12) Et3/(l - ;@)] ff 2Er o b W BV + B

wy By + 2(1 - u)WWSW:QZIdx dy +

S e T e s e et e e e e e e e o e s o - —_— - ——
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The derivatives of the variations of the unknown functions u, v,
.and W can be eliminated if use is made of Gauss' theorem. In the case
of the term wuxBuy dx dy of equation (7) the tramsformetions are:

ﬂ uxaux dx d,y = ‘10" [(uxSu)x - 'le_xs’tadx dy
S S
=j§ux5udy-ﬂ uxxdu dx dy
S

where the line integral is extended around the entire boundary. In a
similar manner one obtains

L egone ax a9 = Frogon a - [[vom ax ay
[Ty s 6= - e - [ ooy
/P S S
[y ax ay = - Gugpn ax - [y ax oy
[Py o9 = = G e - [ s
ﬂquyavxdxdy=55uysvdy-‘b[/‘uwavaxdy |
[[ora o 1« o e - [Jror e
ﬂqu;@@=§mw@-ﬂ%5w&@

[t e - e
[ v e

Jopey ax oy = - Gupw ax - [Jugyow ax o
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In the case of the terms multiplied by Et3/ 2 - 1@)], ceuse’

theorem has to be used twice in succession. Thus for the
term v, 8w, dx dy the transformations are:

ﬂ WyxOWxy dx d.yl= ﬂ [(Wxxswx)x - wmﬁwx]dx dy . |
= ﬁwm{awx d,y - ﬂ WyyxOWy dx 4y
- 95‘ VBV Ay - If [(oacdw) x - wmaﬂdx ay

=9§‘wxx8wx dy-‘ggwmawdy+ﬂ‘wmg8wdx dy

n & sinilar pemer one obbatas: .
TR S NS S
o = [+ i -
[ty ax o = [y ax a5 - Gy ay - G oo ax

« [P 5+ G+ Gy

Finally the line integrel

f"’xy(awx ax j--iivy d.y)

s s e e e At m e R mmcmermerm o am mn = mr = et e n e s e e s e ———— = = A == = -
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becomes after integrations by parts:

§ny(5"x ax - Bwy dy) = 2|:- ("xye")no + (wxya")klx - (“xys")xﬂ.x +
¥=0 ¥=0

(V:qﬁ")w:l -
yely ¥=Ly

fwmaw dx + wmsw dy

Substitutions in equation (7) yield

s(u+v)=ﬂ({ 2E~un+(1-p)uw+(1+u)v,q]+ c”_)u- ]}8u+
{ <=+‘c[(4:+1=v w]}8v+

_ &3 L, 2 -
{6(1 - ) s Gcc[(c + t)(u"+ ) -Azw] = @+ BV + Pf"w} aw>dx ay +

3( {r—iﬁ oo + evy)on a7 = 2(vy + wms)ov ax + (2 - 1) (ay + wx)(ov ay - ou &) +

+ (1 - p)vxx+ (1 + F)U’W]

ﬁ[("“ ot 47 = (i + )y d"]} '

2(1 - p)[(wﬂ&r),:o - (wnaw)m‘x * (wnﬁw)m.x - (":q'a")w ] .
¥=0 =0 yely y=Ly
f{s(l - 2)[‘r + (2 - p)w ] + Gcc(c fvt y) + Py"'y} Bw dx -

e T VE O LR P

e e s e . —
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Where the meanings of the operators are

22 = (¥a®) + (3%/5°)

At = (%) + 2% u?) + (3%fogt)

Since equation (8) must be satisfied idemtically for eny arbitrery
variation of the displacement functions uw, v, eand w, +the following
three differential equetions must hold:

(8a)

Et 2Gcc -( 2 ) 1.
—1_p2I:2uxx+(l-u)uﬂ"l'(l+p)vxﬂ+c+t‘_c+‘bu:-w’f__0(93)
Et 2Gcc -( 2 ) -_
..l_ua[avyy+(1—p.)vxx+(l+p)uﬂ.]+c+t_c+tv-wyd_.0
(9p)
__E_t3_Ale + Gcc[( 2 )("x + ) - A2a = @+ PyWyy + Py = 0
6(1-[.12) c+t (9c)

The line integrals in equation (8) furnish the boundary conditions.
When all the four edges are simply supported the conditions prevailing
along the edges can be represented by the equations

w=0, 8w =0, and Bwy =0 when X =0,L,
w=0, 33w =0, and Bwy =0 when ¥y =0,L,
Hence equation (8) is satisfied identically if
Ux + Mvy = 0 when X = 0,Ly (10a)

Vy + pu = 0 when y (101b)

iy

Uy + Vy = 0 when x = 0,Ly and vhen y = 0,Ly (10¢c)

e a4 e e e e emar = —— - ety © . - r———— S — s % =
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Wyx + HWyy = O when x = 0,Ly (104)
Vyy + Wy = 0 when ¥y = 0,Ly (10e)
w=0 when x = 0,Iy and vhen y =0,L,  (10f)

Equetions (10a) and (10b) require that no moments be taken by the
sandwich plate along the simply supported edges in the form of tension
in the upper face and compression in the lower face, or vice versa.
According to equations” (10d) and (10e), the edges of the individual faces
must also be free of bending moments. In equation (10c) the expres-
sion uy + V4 represents a shear strain in the upper face and an equal
and opposite shear strain in the lower face. The two add up to a couple
vwhich is the torgue applied to the edge of the plate. This must also
vanish when the edges are simply supported.

When all the edges are rigidly clemped, the following edge condi-
tions must be added to those listed earlier:

u=20 Su=0 Wy =0 dwy = 0
vhen x = 0,Ly, and '
v =0 ov = wy=0 Swy=0
wvhen y =0 ,I.y. Hence with rigidly clamped eages the boundary conditions
are
u=0 when X = o,ix (10g)
v=0 vhen  y = 0,Ly (10m)
Uy + Vx =0 vhen x = 0,y and wvhen y = 0,Ly (101)
w=0 vhen x = 0,Ly and when ¥y = O,Ly (103)
W = 0 vhen  x = O,Iy " (10k)
Wy =0 when ¥y = 0,Ly (101)

In many practical epplications these boundary conditions cen be

relaxed slightly.

It is usual to stiffen the edges of a sandwich panel

by means of a rigid insert replacing the core if the core is weak in
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compression perpendicular to the faces. Without such an insert the
reaction forces might damage the edges. When the edge is stiff enough,
the torque corresponding to the sheer strains represented by equa-
tions (10c) and (10i) can be replaced by statically equivalent couples
congisting of shear stresses acting in the core perpendicular tc the
faces. These shears largely cancel one another and the noncanceling
part, corresponding to the rate of change of the torque along the edge,
can be equilibrated by distributed reaction forces along the edges and
concentrated reaction forces at the four corners. Naturally rigid
supports can elways produce such reactions. Hence equations (10c)

and (101i) need not be satisfied.

The replacement of the torque by the reactions is permissible from
the standpoint of static equilibrium, but it causes incompatible defor-
mations. Consequently the state of stress and strain must change in the
plate. With sufficiently stiff edges these changes are negligibly small
beyond a narrow band adjacent to the edges. This must be true by virtue
of Saint Venant's principle. When the edges are weak, the band affected
may be wide and thus equations (10c) and (10i) should not be disregarded.
It is of interest to note that considerations similer to those just
presented form an essential part of classical plate theory where they
were introduced by Kirchhoff. They are described, for instance, on
pages 47 and 89 of reference 8.

Another argument can also be advanced in favor of omitting equa-
tions (10c) and (10i). Simple supports in the case of sandwich plates
mey be construed to consist of individual knife edges along the edges
of each face which permit the translation of the faces in a direction
perpendicular to the edge of the panel but prevent translations along
the edges. Consequently shear forces must be transmitted along the
knife-edge supports which equilibrate the shear represented by the
terms wuy + Vyx. Under such conditions no v-displacements are possible
along the edges parallel to the y-axis nor u-displacements along the
edges parallel to the x-axlis. Consequently ®v 1is not a virtual dis-
placement along the former edges and Su 1s not a virtual displacement
along the latter. The line integral containing uy + vy in equation (8)
vanishes therefore automatically even though the shear stresses are
finite, Tn practical design the two individuel kmife edges can be
replaced by a single one and by a stiffening insert replacing the core
along the edges of the sandwich plate with a consequent slight dis-
turbance in the states of stress and strain in the neighborhood of the
edges.

In view of these considerations, equations (10c) and (101) cen be
replaced by the requirements of vanishing u- and v-displacements along
the edges parellel to the x- and y-axes, respectively. The number of
boundary conditions is thereby not altered. If it is observed that W,

. vanishes along the edges parallel to the x-axis and Vyy is zero along

T T et i et ks S 0 o e m—— i p—a——— —— - - . ———
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the edges parallel to the y-axis, the problem of the simply supported
plate can be stated in the following alternative form:

c+t 0 (na)

Wy

Do[faun + (1 - pugy + (1 + p)vg| - 26ccu + 26cc

Do Bryy + (L = m)vigg + (1 + wugy] - 2cev + 26ce °;t wy =0 (11b)

Dp A+ Gec E'%'E(ux + Vy) = GcC AW - q + Py + Py =0 (1lc)

, Ux + Wy = 0 when X = 0,L, (12a)
vy + Huy = O when y=-0,Ly' (12b)
u=0 vhen ¥y = 0,Ly (12c)
v=0 when x = 0,L, (124)
Wyy = 0 vhen x = 0,L, ) (12e)
Wyy =0 vhen ¥ =0,Ly .(12f) _
w=0 vhen x = 0,Ly and when y = 0,Ly (12g)

In equations (11) the symbols denoting bending rigidities are defined
in the following manner:

Do

Et(c + t)2/2 @ - w?) (132)

ee3f6(x - 12) (13b)
vhere Dy dis the bending rigidity per inch of the faces about their own
centroidal axes, calculated for the two faces, and D, 1s the bending
rigidity of a l-inch-wide segment of the sandwich panel, calculated about
the centroidel axis of the sandwich, neglecting the contribution of ‘the
‘core as well as that represented by De.

Dp
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Finally the case of a free wmsupported edge should be mentioned.
Vhen it is parallel to the x-axis, the boundary conditions are:

Vy + Huy = 0 . (10m)
Wyy + WWyy = O (100)

Et3 2v
mﬁm + (2 - p)wm] + GCC(c T 1 - Wy) + way =0 (].Op)

When the free edge is parallel to the y-axis 5 the boundary conditions
become:

Uy + vy = 0 (10q)
Uy + Vy =0 (10r)
Vyx + HWyy = 0 (108)

3
Z(_Et_7)-[Ermcx + (2 - Wy ] + Gc"(c - "X) By =0 (108)
1-~p .

In equations (10p) and (10t) the bracketed term represents the dis-
tributed shear in the two faces augmented by the shear corresponding to
the rate of change of the torque along the edges of the two faces. (See
P. 90 of reference 8.) The next term is the shear carried by the core,
and the last term is the component of the edge load perpendicular to the
deflected surface of the faces. The equations represent, therefore, the
condition that the resultant shear force must vanish along a free edge.
The physical interpretation of the first three equations of each set was
discussed earlier.

In addition the condition

‘Wmﬁw =0

must be fulfilled at each corner of the plate. VWhen the cornmer is

———— e A e — e
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supported, the variation of the deflection vanishes. When the corner
is unsupported, the deflection function must satisfy the requirement

Vyy =0 (10u)

BUCKLING OF A SIMPLY SUPPORTED SANDWICH PLATE

‘ UNDER EDGEWISE COMPRESSION

When the compressive force is acting only in the y-direction and
the transverse loading is absent, Py = q = 0, the solution of the

differential equations (11) and boundary conditions (12) can be written
as .

' u=A cos-{—’-‘- sin i.gyx . (1k4a)
X
. v =B sin E—x cos -EEI (14p)
X N
w=Cs:tn]’:l‘:—xs;’tn%“r--z (1hc)
X v

Substitution of these functions in equations (11) yields three
homogeneous linear equations whose determinent must vanish when buckling

occurs. The determinant is:

Po[2+ (2 - K3 + 25ce (1+ 1)KE, -zeccc_;ﬁ(f;) _
(1+ “)KPO Po [2K2+ (1- uﬂ + 2Gcc . ’ -QGCcS_EE(I.E.;)K
Gee < it = -Gce ﬁ(ﬁ)x (ﬁ)2 E,f(l+ %22 Gee(1+K3) - PyKZJ

(25)



NACA TN 2225 17

where
P _(1)2]) =n2Eb(c+t)2 ‘1
® \Ix/ P 2(1 - p 1,2 -
A TR . (16)
e (Lx)Df 6(1 - D2 .
Ly
K=n-=
Ly ot

The symbol K designates the side ratio of the bulge, and P, and Py

are proportional to the buckling loads of ordinary plates having bending
rigidities Dy and Df, respectively.

Expansion of the determinant and solution for Py = Poy. Yield the
buckling load -

2 Gee(L + XK2)P
- (1+x?) @ + k)pp + — ( _) e (17)
K2 Gee + (1 + K9P,

cr

TRANSFORMATION OF DIFFERENTIAL EQUATIONS

If equa.tion (11a) is differentiated with respect to x, and equa-
tion (11b) with respect to ¥, eand the resulting equations are added,
one obtains oo )

_ o A2 =c+'l: 2
(l GccA>(ux+v). 5 Aw (18)

Equation (1lc) can now be solved for (ux + vy) and the

operator [1 - Do /Gcc)A2] applied to the resulting equations. After

ma.nipula.tions the following sixth-order partial differential equation
is obtained:

De 28w - (D, + Dg)(Goc/Dy) Ak = [A2 - (GchDo):l (q - wam; - Pywyy)
(19)

e e e s e s e i e e e ——————— - e —— - o e —— e e e . —————— e i -
P
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6 - (35/2a8) + 3(s6/ax0s2) + ;’,(36/Bx23y1") + (35/a5) (15w

Assumption of w in the form given in equation (lic) again yields
the expression in the right-hand member of equation (17) for the buckling
load.

It is of interest to note that equation (19) reduces to the differ-
ential equation of the sandwich plate given by Reissner as equation (71)
in reference 6 if Dp is assumed to be zero. .

EVALUATION OF BUCKLING FORMULA

For any side ratio Ly/Lx the buckling load Pcr can be calculated
from equation (17) if n is assumed as some positive integer. Different
agsumptions yleld different buckling loads, and buckling occurs according
to the pattern whose buckling load is the smallest. Figure 5 shows the
variation of the buckling losd with Ly[Lx for several values of the

ratio c/t. The symbol A is defined as

PCJ.‘/Pf = Gcr/Ucr,f = A (20)

It can be seen from the diagram that the buckling stress varies

1ittle with the side ratio LyfLy. For c/t =25 and °

2G'ct/Pf = G¢ /Ucr £ = 131.7, the buckling stress is practically
constant for all values of Ly/Lx .greater than 0.2. When c/t = T.5
and R = 131.7 +the limit above which the buckling stress is constant
is 0.6. As a matter of fact, the limit is always less than 1 except
when the core 1s infinitely rigid in shear. Then the limit is 1 in
agreement with thin-plate theory. For this reason the side ratio is
not a parsmeter of major importance and the minimum buckling stress of
all rectangular sendwich panels can be presented in & single diegream.

The dashed line near the left edge of the diagream is the boundary
to the right of which the side ratio has a negligible effect upon the
. buckling load. The values of the numerical factor A corresponding to
the buckling load of these "long" plates are plotted as the dash-dotted
line near the right edge of the diagram. The ordinates of this curve
are the values of A, and the abscissas- the corresponding values of the
thickness ratio c/t
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Data obtained from meny similar diagrams prepared for various
values of R are collected in figure 6. The abscissa is the thickness
ratio c/t and the ordinate is a numerical factor C defined as

: (1/M)Per f(Bo + B¢) = © (21)
The critical stress can be calculated from the formula

vhere o, ;' Would be the buckling stress of the two Paces 1f they were
not connected with each other by means of the core:

2
Ger,p = — B (23)
3(1 - ua)an
and F 1s the form factor:
2
= c
F—l+3(l+t) (2k)

Since FDy 1s the total bending rigidity of a sandwich panel whose core
does not carry bending stresses but is infinitely rigid in shear, Focr,f
is the buckling stress of a sendwich panel that is not subject to shearing
deformations, and C is a reduction factor for the buckling stress of the

actual sendwich panel. The value of C depends on the sandwich buckling
parameter

R = Gc/(Focr,£) - (29

In figure 6, R is the parameter of the family of curves.

Figure T presents the same information as figure 6 but the scale
used for c/t 1s logarithmic to facilitate reading the values of C in
the region 0.5 < A < 1.5. ;
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NUMERICAL EXAMPLE

As-an example of the application of the buckling formula just
derived, the buckling stress of an alclad-balsa sandwich plate will now .,
be calculated. The plate is square with a side length of 23,5 inches.
Other pertinent data are:

t=0.021 inch ¢ = 0.181 inch
Ge = 19,000 psi E = 9.5 x 106 psi
p=0.3
According to equation (24),

F=21+3(1+8.62)2 =278

From equation (23),

6 2
_ 9.5 x 10°(0.020)° _ o oy

Ocr,f
s 3 X 0.91 X 23.52 .

Consequently,
F“cr,f = 7560 psi
From equation (25),
R = 19,000/7560 = 2,51

The value of C can now be found from figure 7 for c/t = 8.62
a.'ﬂ.d. R = 2.51: .

The criticel stress can be computed from equation (22):

O = 0.955 X T560 = T220 psi
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The critical load per inch of the width of the panel is therefore

Pop = 0.042 x 7220 = 303 1b/in.

The foutr specimens of this type tested at the Forest Products
Laboratory and reported in table 3 of reference 9 failed under loads
ranging from 266 to 300 psi. This, as well as other similar comparisons,

indicates that there was good agreement between the theory of the present -

investigation and results of tests carried out at the Forest Products
Laboratory.

If the balsa core is replaced by a cellular cellulose acetate core
having a shear modulus

Ge = 2500 psi
the ratio R becomes _
R = 2500/7560 = 0.331
and thus figure 7 ylelds _ )
€ =0.725
Hence
0., = 0.726 X 7566 = 5475 psi
and

Pop = 0.042 x 5475 = 230 1b/in.

CONCLUDING REMARKS

Differential equations have been developed for the calculation of
the deflections and the buckling load of rectangular sandwich panels
subjected to transverse loads and edgewise compression. The equations
have been solved for-simply supported panels compressed parallel to one
pair of edges. The results of the calculations are presented in a
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diagram which permits a ra.pid. computa.tidn of the buckling loads. Good. .
agreement was obtained with results of tests carried out at the Forest

Products Leboratory.

Polytechnic Institute of Brooklyn
Brooklyn, N. Y., May 27, 1949
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Figure 5.- Buckling stress as a function of side ratio and thickness ratio.
R = 181.717. Dashed line near left edge of diagram is boundary to
right of which-side ratic has negligible effect on buckling load.
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